Detection of new protein domains using co-occurrence: application to Plasmodium falciparum
نویسندگان
چکیده
MOTIVATION Hidden Markov models (HMMs) have proved to be a powerful tool for protein domain identification in newly sequenced organisms. However, numerous domains may be missed in highly divergent proteins. This is the case for Plasmodium falciparum proteins, the main causal agent of human malaria. RESULTS We propose a method to improve the sensitivity of HMM domain detection by exploiting the tendency of the domains to appear preferentially with a few other favorite domains in a protein. When sequence information alone is not sufficient to warrant the presence of a particular domain, our method enables its detection on the basis of the presence of other Pfam or InterPro domains. Moreover, a shuffling procedure allows us to estimate the false discovery rate associated with the results. Applied to P. falciparum, our method identifies 585 new Pfam domains (versus the 3683 already known domains in the Pfam database) with an estimated error rate <20%. These new domains provide 387 new Gene Ontology (GO) annotations to the P. falciparum proteome. Analogous and congruent results are obtained when applying the method to related Plasmodium species (P. vivax and P. yoelii). AVAILABILITY Supplementary Material and a database of the new domains and GO predictions achieved on Plasmodium proteins are available at http://www.lirmm.fr/~terrapon/codd/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
Detection of Plasmodium falciparum Directly from Blood Samples Using the Polymerase Chain Reaction
متن کامل
Genetic Diversity Block 2 of Surface Protein-1 in Plasmodium Falciparum Merozoite by Nested-PCR Method in Southeastern Iran
Abstract Background and Objectives: Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) is a promising vaccine against malaria during its blood stages which play an important role in immunity to this disease. Polymorphic nature of this gene is a major obstacle in making an effective vaccine against malaria. In this study, the genetic diversity of Plasmodi...
متن کاملA genomic perspective of protein kinases in Plasmodium falciparum.
Protein kinases are central to regulation of cellular signaling in the eukaryotes. Well-conserved and lineage-specific protein kinases have previously been identified from various completely sequenced genomes of eukaryotes. The current work describes a genome-wide analysis for protein kinases encoded in the Plasmodium falciparum genome. Using a few different profile matching methods, we have id...
متن کاملIdentification of Divergent Protein Domains by Combining HMM-HMM Comparisons and Co-Occurrence Detection
Identification of protein domains is a key step for understanding protein function. Hidden Markov Models (HMMs) have proved to be a powerful tool for this task. The Pfam database notably provides a large collection of HMMs which are widely used for the annotation of proteins in sequenced organisms. This is done via sequence/HMM comparisons. However, this approach may lack sensitivity when searc...
متن کاملImproving pairwise comparison of protein sequences with domain co-occurrence
Comparing and aligning protein sequences is an essential task in bioinformatics. More specifically, local alignment tools like BLAST are widely used for identifying conserved protein sub-sequences, which likely correspond to protein domains or functional motifs. However, to limit the number of false positives, these tools are used with stringent sequence-similarity thresholds and hence can miss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 25 23 شماره
صفحات -
تاریخ انتشار 2009